skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eriten, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Articular cartilage heals poorly but experiences mechanically induced damage across a broad range of loading rates and matrix integrity. Because loading rates and matrix integrity affect cartilage mechanical responses due to poroviscoelastic relaxation mechanisms, their effects on cartilage failure are important for assessing and preventing failure. This paper investigated rate- and integrity-dependent crack nucleation in cartilage from pre- to post-relaxation timescales. Rate-dependent crack nucleation and relaxation responses were obtained as a function of matrix integrity through microindentation. Total work for crack nucleation increased with decreased matrix integrity, and with decreased loading rates. Critical energy release rate of intact cartilage was estimated as 2.39 ± 1.39 to 2.48 ± 1.26 kJ m−2in a pre-relaxation timescale. These findings showed that crack nucleation is delayed when cartilage can accommodate localized loading through poroviscoelastic relaxation mechanisms before fracture at a given loading rate and integrity state. 
    more » « less
  2. null (Ed.)